
N-cadherin expression level as a critical indicator of invasion
in non-epithelial tumors

Florent Péglion and Sandrine Etienne-Manneville*
Institut Pasteur; CNRS URA 2582; Cell Polarity and Migration Group; Paris, France

Keywords: cadherin, adherens junctions,
migration, invasion, polarity, astrocyte,
glioma, glioblastoma

Submitted: 04/09/12

Revised: 05/12/12

Accepted: 05/23/12

http://dx.doi.org/10.4161/cam.20855
*Correspondence to: Sandrine Etienne-Manneville;
Email: sandrine.etienne-manneville@pasteur.fr

Commentary to: Camand E, Peglion F, Osmani N,
Sanson M, Etienne-Manneville S. N-cadherin
expression level modulates integrin-mediated
polarity and strongly impacts on the speed and
directionality of glial cell migration. J Cell Sci
2012; 125:844–57; PMID:22275437; http://dx.doi.
org/10.1242/jcs.087668

Cancer cell dissemination away from
the primary tumor and their ability

to form metastases remain the major
causes of death from cancer. Under-
standing the molecular mechanisms trig-
gering this event could lead to the design
of new cancer treatments. The establish-
ment and the maintenance of tissue
architecture depend on the coordination
of cell behavior within this tissue. Cell-
cell interactions must form adhesive
structures between neighboring cells
while remaining highly dynamic to allow
and control tissue renewal or remodeling.
Among intercellular junctions, cadherin-
based adherens junctions mediate
strong physical interactions and transmit
information from the cell microenviron-
ment to the cytoplasm. Disruption of
these cell-cell contacts perturbs the pola-
rity of epithelial tissues leading to their
disorganization and ultimately to aggres-
sive carcinomas. In non-epithelial tissues,
the role of cadherins in the development
of cancer is still debated. We recently
found that downregulation of N-cadherin
in malignant glioma—the most frequent
primary brain tumor—results in cell
polarization defects leading to abnormal
motile behavior with increased cell speed
and decreased persistence in directionality.
Re-expression of N-cadherin in glioma
cells restores cell polarity and limits glioma
cell migration, providing a potential thera-
peutic tool for diffuse glioma.

Introduction

The migration of cancer cells blurs tumor
margins and possibly leads to metastases.

Tumor invasion frequently prevents the
success of focal therapies such as surgery
or radiotherapy and constitutes a major
obstacle on the road to cancer treatment.
It is thus essential to better understand
the mechanisms responsible for cancer cell
invasion. The process of cell migration has
been widely studied over the last decades
and the main molecular components
required for cell motility have been
deciphered.1-3 Numerous regulators of
the cytoskeleton have been found to be
overactivated in cancers. According to
various studies led in breast, colon and
lung cancers (for a review, see ref. 4), Rho
GTPases proteins (Rac1, Cdc42, RhoA
and RhoC) show a higher activity in
cancer cells than in normal cells. The
PI3K pathway, involved in the very first
steps of cell migration, is also overactivated
in a wide range of tumors such as prostate,
breast, endometrium, colon and nervous
system cancers, due to Pik3ca activating
mutations5 and/or Pten deletion (for a
review see ref. 6) and is linked to invasive
forms of these tumors.7

If the overactivation of the motility
machinery is a well-known feature of
invasive cells, the relationship between
cancer cells and their microenvironment
is another fundamental topic which, in
contrast, has not been fully explored.
To coordinate the intracellular forces
generated by the cell cytoskeleton and
produce a net displacement, cells must
acquire a structural asymmetry that dis-
criminates the cell front from the cell rear.
The polarization and the orientation of the
cell are tightly controlled by extracellular
cues and cancer cell dissemination cer-
tainly requires profound alterations of
these regulatory mechanisms. In vitro
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and in vivo experiments have shown that
decreased adhesion to the substratum or to
the surrounding epithelial cells favors the
invasion process of carcinoma cells leading
ultimately to metastasis8-10 (for a review see
ref. 11). These changes can result from
oncogenic pathways, such as increased
TGF-β or Wnt signaling,12,13 which ulti-
mately destabilize the epithelial barrier, or
from abnormal levels of adhesion mole-
cules at the plasma membrane. We have
recently demonstrated that alterations in
the expression level of the intercellular
adhesion molecule N-cadherin in glia-
derived tumors lead to dramatic changes
in the migratory behavior of cancer cells.

Pertubation of Cadherin Levels
in Gliomas

The integrin family of cell adhesion
receptors directly binds components of
the extracellular matrix providing the
traction force necessary for cell motility
and invasion. The expression level of
integrins is frequently altered in cancers.
Such alterations are associated with
increased or decreased cell invasion
depending on the adhesive properties of
the integrin but also on the cell context
and the tumor stage.11,14 Similarly, altered
expression of the intercellular adhesion
molecules coincides with tumor progres-
sion and increased dissemination.15

Among the various molecular com-
plexes involved in cell-cell interactions,
adherens junctions allow calcium depen-
dent cell-cell adhesion and play a key
role in maintaining tissue integrity.
Classical cadherins are essential transmem-
brane components of adherens junctions.
E-cadherin is mainly expressed in epithe-
lial tissues16 and loss of E-cadherin is
viewed as a triggering event of carcinoma
cell detachment from the primary tumor
and invasion of the conjunctive tissues.9,17

The decrease of E-cadherin expression is
frequently associated with a cadherin
switch resulting in the concomitant
increase in N-cadherin expression.18-20 In
contrast to E-cadherin, the expression of
N-cadherin molecules in these cells seems
to have a promigratory effect, promoting
tumor infiltration in the conjunctive
tissue,21,22 possibly by favoring association
of cancer cells with endothelial and other

stromal cells. Although the changes in
cadherin levels during carcinoma progres-
sion are now well documented, the
possibility that such changes occur in
non-epithelial tumors has only recently
begun to be explored.

Gliomas account for more than 50% of
all brain tumors and are the most common
primary brain tumors in adult. Its malig-
nant forms are associated with one of the
poorest prognoses for cancer because of
their ability to infiltrate diffusely into the
normal cerebral parenchyma. The causes
of glioma invasion remain poorly under-
stood. Various studies have shown that
changes in N-cadherin levels occur in
malignant gliomas.23-26 Some results show
an inverse correlation between N-cadherin
expression and glioma invasiveness.23,27

Others do not show any correlation26

and even report a positive correlation with
the grade of the gliomas, knowing that the
higher the grade is, the more invasive
gliomas are.24 This apparent contradiction
may result from the use of different animal
models or from the fact that, in some
studies, the level of N-cadherin mRNA is
analyzed, while other studies are based on
the level of N-cadherin protein. In our
recent study,28 we have used fresh malig-
nant glioma samples, tumor-derived pri-
mary glioma cells and commercial glioma
cell lines. We observed that the level of
N-cadherin protein is variable but is
generally lower in tumor samples and in
tumor cells than in normal brain and
primary glial cells. Surprisingly, we
observed that mRNA levels were, in
contrast, higher in tumor samples than in
normal tissues (Péglion, unpublished
data). These seemingly contradictory
results may reflect a decrease in protein
stability that would need to be confirmed.
They may also explain the discrepancy
between previous reports. A downregula-
tion of the catenins, major protein partners
of cadherin, was also observed in glioma
cells, strengthening the idea of a decrease
in N-cadherin protein levels and further
showing that adherens junctions are
destabilized in glioma cells. Decreased
cell-cell adhesion was also confirmed after
staining of adherens junction components
in glioma cells. Alteration of cell-cell
adhesion was associated with an abnormal
migratory behavior in vitro, suggesting

that changes in cadherin expression levels
may play a key role in tumor invasion.

N-Cadherin in Control
of Cell Migration

Cadherins are adhesive molecules that
transmit most of the mechanical forces
exerted between neighboring cells. As
such, they strongly contribute to tissue
integrity. In addition, N-cadherin has been
shown to serve as a support for neurons
that migrate in a chain-like fashion.29 In
some circumstances, they may also func-
tion as a brake for cell migration.30 In
glioma cells, downregulation of adherens
junction molecules was associated with an
increased velocity when cell migration was
tested in a wound-healing in vitro assay. In
this assay, normal glial cells migrate slowly
as a cohesive sheet. Downregulation of
N-cadherin levels led to the detachment
of wound-edge cells from the monolayer,
suggesting that alteration of adherens
junctions may release a brake caused by
cell-cell adhesion at the cell rear. However,
the migration induced by wounding a 2D
confluent cell monolayer is very different
from the migration observed during tumor
cell invasion. We thus also analyzed the
cell migratory behavior in a 3D matrigel
spheroid assay, closer to physiological
conditions. Decreasing the expression of
N-cadherin by siRNA increased glial cell
invasion in the surrounding matrigel,
mimicking the dispersion of glioma cells
in this assay (Péglion, unpublished data).
It is thus tempting to speculate that, in
neural as in epithelial tissues, loss of the
adhesion molecules responsible for tissue
cohesion favors the escape of tumor cells
from the tissue of origin.

Once free from the original tumor,
N-cadherin expressing carcinoma and
glioma cells migrate between cells also
expressing N-cadherin. There, the versati-
lity of N-cadherin in the control of
migration speed may result from different
expression levels of this molecule at the cell
surface and in the cell microenvironment.
Variations in the role of N-cadherin in cell
migration may also result from differences
in the expression of protein partners
such as catenins, between cell types.31-33

Cadherin regulators, such as the ubiqui-
tine ligase Hakai, may be expressed in
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Figure 1. N-cadherin expression level affects astrocyte adhesion, polarity and migration. (A) N-cadherin-mediated cell-cell contacts locally inhibit
the formation of focal adhesions (FAs). As a consequence, glioma cells, which express less N-cadherin (right side), have less adherens junctions and more
FA around their periphery than normal astrocytes (left side). During wound healing, normal astrocytes at the wound edge display anisotropic cell-cell
contacts. FAs form and accumulate at the cell wound edge, promoting cell polarization and directed migration. In contrast, in cells lacking N-cadherin,
the distribution of FAs is not polarized and the direction of migration is random. (B) In confluent astrocytes, removal of cell-cell contacts by wounding of
the monolayer allows the formation of FA at the wound edge. This induces an intracellular signal promoting the recruitment and activation of the
polarity complex Cdc42-Par6-aPKC.
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transformed epithelial cells but not in
neural cells.34,35 How such variation may
affect the functions of N-cadherin remains
to be elucidated. The expression levels of
these proteins and also the expression of
cell-type specific isoforms may affect
cadherin stability at the plasma membrane,
adherens junctions’ turnover or cadherin-
mediated intracellular signals.

In addition to faster migration, we also
observed that a decrease in N-cadherin
levels induced a less persistent movement,
with cells frequently turning and changing
direction. This phenomenon was asso-
ciated with a perturbation of the front-rear
polarity axis in these cells and suggested
that N-cadherin may also play a key role
in the regulation of cell polarity. Beyond
its mechanical role, N-cadherin can also
transduce intracellular signals which
could indirectly affect cell migration.36

Cadherin-mediated signals have been
involved in the regulation of cell polarity
and may thereby affect the direction
of migration. In epithelial cells, there is
a strong interdependent relationship
between adherens junction formation and
baso-apical polarity determination (for a
review, see ref. 37). Baso-apical polarity in
epithelial cells is defined by the appropri-
ate segregation of three different polarity
complexes, which are the Par, the Crumbs
and the Scribble complexes.38-40 Cadherins
have been linked to polarity complexes
either via their direct interaction with
members of the polarity complexes or via
the regulation of the small GTPases and
specific phospholipids which controls the
asymmetric distribution of polarity com-
plexes in epithelial cells. Par3, a member
of the Par complex, has indeed been
shown to localize at cadherin-dependent
cell-cell junctions41 and to interact with
VE-and N-cadherin complexes. Loss of
E-cadherin perturbs the localization of
aPKC, another member of the Par
complex. E-cadherin can also interact
with Dlg a member of the Scribble
complex42 (for a review see ref. 37). In
addition, E-cadherin contributes to the

polarized targeting of basolateral mem-
brane components via its interaction with
the exocyst complex.43

Essential to baso-apical polarity,
cadherins are also involved in the front-
rear polarization of wound edge cells.44,45

Anisotropic distribution of cadherin-
mediated interactions sets the direction
of the centrosome-nucleus polarity axis in
astrocytes. As a consequence, cells that
cannot maintain N-cadherin-mediated
junctions are unable to polarize properly.
We propose that this causes frequent
changes in the orientation of the polarity
axis and, in consequence, in the direction
of migration. A similar behavior is
observed in glioma cells that express
low levels of cadherins. In these cells the
centrosome is mispositioned and the
direction of migration induced by wound-
ing continuously varies (Fig. 1A, lower
panel). Importantly, re-expression of
N-cadherin in glioma cells restores centro-
some orientation and normal cell polarity,
indicating that the decrease in N-cadherin
levels is a major event leading to perturba-
tion of cell polarity in glioma cells.

How cadherins actually control front-
rear polarity during collective migration is
still not fully understood. In fact, integrins
signaling has been previously shown to
be required for polarization of migrating
astrocytes.46,47 Formation of new focal
adhesions is restricted to the leading edge.
Integrin signaling leads to the polarized
recruitment and activation of the polarity
complex Par6-aPKC via the small G
protein, Cdc42 (Fig. 1B). In gliomas or
in N-cadherin depleted astrocytes, the
distribution of focal adhesions is not
polarized. In normal cells, the presence of
adherens junctions locally inhibits the
formation of focal adhesions.44,48 Thus,
in a confluent monolayer, very few focal
adhesions are present. During neural crest
cell migration, N-cadherin-mediated junc-
tions also inhibit Rac activation and
therefore restrict its activity to the free
edge,49 where it can induce the formation
of new focal contacts. In absence of stable

adherens junctions, focal adhesions are
present all around the cell periphery
(Fig. 1A, upper panel), and the release of
cell-cell contacts by wounding does not
induce new integrin-mediated interac-
tions. In these conditions, the recruitment
of Cdc42 does not occur and cell
orientation remains random.

Conclusion

Our current understanding of the events
leading to non-epithelial tumor spreading,
such as gliomas, mainly relies on anatomi-
cal studies and, more recently, on rodent
models and orthotopic xenograft of
glioblastoma cells.50 A better comprehen-
sion of the mechanisms responsible for
tumor cell migration is essential to find
new therapeutic targets and to avoid
relapses after classic treatments. Glioma
cells can invade and spread into the brain
parenchyma over long distances. It is not a
metastatic process but an active dissemi-
nation either along pre-existing structures
such as myelinized axons or perivascular
spaces, or through the cerebrospinal
fluid.51 The therapeutic challenge for
glioma invasion is however the same as
for metastatic cancers: it aims at prevent-
ing the detachment of cancerous cells from
the initial tumor mass to limit their
dissemination. Re-introducing N-cadherin
in glioma cells in vitro rescues glioma cell
polarity and limits their migration. These
findings need to be validated in vivo, but
lead us to think that restoring cadherin
cell-cell contacts in glioma cells may
reduce glioma invasion and could become
a new potential therapeutic strategy for
glioma treatment.
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